strangerRidingCaml
4. Topology of Metric Spaces 본문
Topology of Metric Spaces
Metric Spaces and Their Topology
Metric Space: A metric space is a set \( X \) equipped with a distance function \( d: X \times X \rightarrow \mathbb{R} \) satisfying the following properties for all \( x, y, z \) in \( X \):
- Non-negativity: \( d(x, y) \geq 0 \) with equality if and only if \( x = y \).
- Identity of indiscernibles: \( d(x, y) = 0 \) if and only if \( x = y \).
- Symmetry: \( d(x, y) = d(y, x) \).
- Triangle inequality: \( d(x, z) \leq d(x, y) + d(y, z) \).
Properties of Metric Spaces
Completeness: A metric space \( X \) is complete if every Cauchy sequence in \( X \) converges to a limit in \( X \).
Compactness: A metric space \( X \) is compact if every open cover of \( X \) has a finite subcover.
Connectedness: A metric space \( X \) is connected if it cannot be divided into two disjoint nonempty open sets.
Examples of Metric Spaces
Euclidean Space: The Euclidean space \( \mathbb{R}^n \) equipped with the standard Euclidean metric is a metric space. The distance between two points \( x = (x_1, x_2, \ldots, x_n) \) and \( y = (y_1, y_2, \ldots, y_n) \) is given by \( d(x, y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \ldots + (x_n - y_n)^2} \).
Discrete Metric Space: Any set \( X \) equipped with the discrete metric \( d(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases} \) is a metric space.
'General topology' 카테고리의 다른 글
6. Compactness and Compactification (0) | 2024.05.04 |
---|---|
5. Separation Axioms (0) | 2024.05.04 |
3. Continuity and Homeomorphisms (0) | 2024.05.04 |
2. Topological Spaces (0) | 2024.05.04 |
1. Introduction to Set Theory (0) | 2024.05.04 |