strangerRidingCaml
4. Topology of Metric Spaces 본문
Topology of Metric Spaces
Metric Spaces and Their Topology
Metric Space: A metric space is a set
- Non-negativity:
with equality if and only ifd(x,y)≥0 .x=y - Identity of indiscernibles:
if and only ifd(x,y)=0 .x=y - Symmetry:
.d(x,y)=d(y,x) - Triangle inequality:
.d(x,z)≤d(x,y)+d(y,z)
Properties of Metric Spaces
Completeness: A metric space
Compactness: A metric space
Connectedness: A metric space
Examples of Metric Spaces
Euclidean Space: The Euclidean space
Discrete Metric Space: Any set
'General topology' 카테고리의 다른 글
6. Compactness and Compactification 0 | 2024.05.04 |
---|---|
5. Separation Axioms 0 | 2024.05.04 |
3. Continuity and Homeomorphisms 0 | 2024.05.04 |
2. Topological Spaces 0 | 2024.05.04 |
1. Introduction to Set Theory 0 | 2024.05.04 |