strangerRidingCaml

2. Matrices and Matrix Operations 본문

Linear algebra

2. Matrices and Matrix Operations

woddlwoddl 2024. 5. 4. 13:54
728x90
Matrices and Matrix Operations

Matrices and Matrix Operations

Matrix Representation of Linear Transformations

A linear transformation can be represented by a matrix. Let $\mathbf{A}$ be an $m \times n$ matrix and $\mathbf{x}$ be a vector in $\mathbb{R}^n$. The product $\mathbf{Ax}$ represents the transformation of $\mathbf{x}$ by $\mathbf{A}$.

Matrix Addition, Scalar Multiplication, and Multiplication

Matrix Addition: If $\mathbf{A}$ and $\mathbf{B}$ are $m \times n$ matrices, their sum $\mathbf{A} + \mathbf{B}$ is obtained by adding corresponding elements:

$$ \mathbf{A} + \mathbf{B} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{bmatrix} $$

Scalar Multiplication: If $c$ is a scalar, the product $c\mathbf{A}$ of the scalar $c$ and the matrix $\mathbf{A}$ is obtained by multiplying each element of $\mathbf{A}$ by $c$:

$$ c\mathbf{A} = \begin{bmatrix} ca_{11} & ca_{12} & \cdots & ca_{1n} \\ ca_{21} & ca_{22} & \cdots & ca_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ ca_{m1} & ca_{m2} & \cdots & ca_{mn} \end{bmatrix} $$

Matrix Multiplication: If $\mathbf{A}$ is an $m \times p$ matrix and $\mathbf{B}$ is a $p \times n$ matrix, their product $\mathbf{AB}$ is an $m \times n$ matrix obtained by multiplying the rows of $\mathbf{A}$ by the columns of $\mathbf{B}$:

$$ \mathbf{AB} = \mathbf{A}\begin{bmatrix} | & | & & | \\ \mathbf{B}_1 & \mathbf{B}_2 & \cdots & \mathbf{B}_n \\ | & | & & | \end{bmatrix} = \begin{bmatrix} \mathbf{A}\mathbf{B}_1 & \mathbf{A}\mathbf{B}_2 & \cdots & \mathbf{A}\mathbf{B}_n \end{bmatrix} $$

where $\mathbf{B}_1, \mathbf{B}_2, \ldots, \mathbf{B}_n$ are the columns of $\mathbf{B}$.

Transpose, Inverse, and Determinant of Matrices

Transpose: The transpose of an $m \times n$ matrix $\mathbf{A}$, denoted by $\mathbf{A}^T$, is obtained by interchanging rows and columns:

$$ \mathbf{A}^T = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix} $$

Inverse: If $\mathbf{A}$ is a square matrix, and if there exists a matrix $\mathbf{B}$ such that $\mathbf{AB} = \mathbf{BA} = \mathbf{I}$, then $\mathbf{B}$ is called the inverse of $\mathbf{A}$, denoted by $\mathbf{A}^{-1}$. Not all matrices have inverses.

Determinant: The determinant of a square matrix $\mathbf{A}$, denoted by $\det(\mathbf{A})$ or $|\mathbf{A}|$, is a scalar value calculated from the elements of the matrix. It represents the scaling factor of the transformation represented by the matrix.

'Linear algebra' 카테고리의 다른 글

6. Eigenvalues and Eigenvectors  (0) 2024.05.04
5. Linear Transformations  (0) 2024.05.04
4. Vector Spaces  (0) 2024.05.04
3. Systems of Linear Equations  (0) 2024.05.04
1. Introduction to Vectors and Vector Spaces  (0) 2024.05.04